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Foreword 

During the past two years, whenever asked to introduce neural networks for an  audience 
of physicists, I used to start with a sketch of history, admittedly simplified and organised 
from a physicist’s vantage point-a broader and fairer context was given afterwards-in 
order to reconstruct the main steps, leading from the genesis of the topic to its present 
state. The name of Elizabeth Gardner was associated with the most recent such step, 
the seventh one. 

Here is the list of individuals and their contributions. 
(1) W S McCulloch and  W Pitts ( 1943) for the description of a neuron as a binary, 

all-or-none, element, and for showing that networks of such simple elements can 
perform logical computations. 

(2) D 0 Hebb (1949) for the notion that a percept or a concept is represented in 
the brain by a cell assembly and  the suggestion that learning occurs by modification 
of synaptic efficacies. 

(3) B G Cragg and H V Temperley (1954) for the analogy between neural network 
persistent activity and the collective states of coupled magnetic dipoles. 

(4) W A Little (1974), for the analogy between noise and temperature, that paved 
half the way towards thermodynamics. 

(5)  J J Hopfield (1982, 1984), for the study of models of content-addressable 
memory with a concept of ‘energy’, that completed the linkage to thermodynamics, 
and for the analogy to spin glasses. 

(6)  D J Amit, H Gutfreund and H Sompolinsky (1985) for showing that a class 
of such models was amenable to exact treatment, and yielded striking results. 

(7) E Gardner (1987) for the systematic exploration of the space of couplings, a 
novel approach in statistical mechanics, and for the consequent opening of new vistas 
in this science. 

As early as the days in late 1986 and early 1987 at Ecole Normale, when Elizabeth 
presented to us her preliminary results (later published as ‘The space of interactions 

f This paper h a s  originall> given as an informal summary talk at the end of the Bat-Sheva Seminar held 
in Jerusalem from 24 May to 3 June 1988. N o  formal references are given but all scientists mentioned, 
except some in an historical context, were contributors to the Seminar. For publication details, see the 
bibliography at the end of this paper. 
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in neural network models’), I felt convinced that this was a major conceptual break- 
through, as is now obvious from all the results that have blossomed along her approach 
(e.g. the recent Virasoro work on categorisation). She was aware of this recognition 
and asked me to write in support of her application for a lectureship at Edinburgh: 
my report was sent on April 12. Little did I know, then, that the remarkable achieve- 
ments of this modest, gentle young woman were offered to us in the urgency of a fight 
against death. In  retrospect, the brilliant creativity and the admirable dignity of her 
last years are the best apology for pure research and the ethics of knowledge. 

The year-round programme at the Institute for Advanced Studies of Jerusalem, in 
which Elizabeth participated during two months in the winter of 1988, culminated in 
a two-week workshop on ‘Neural Network Models and  their Relevance to 
Neurobiology’, for which I was asked to draw a summary and  perspectives. This final 
session took place a couple of weeks before Elizabeth’s passing, which news came as 
a shock for all of us. 

In agreement with the colleagues who asked me to contribute a written version of 
this talk (Hanoch Gutfreund kindly suggested some improvements), I have decided 
to keep the casual spirit of the oral presentation. What follows is a snapshot, dated 
3 June 1988. 

1. Introduction 

Drawing perspectives at the end of a conference is a difficult exercise. Indeed, 
predictions of scientific activity, for the short term, are bound to be close to linear 
extrapolation, and thus trivial; for the long-term, they are likely to fall into banalities, 
and  thus be boring. For the middle-term, predictions may be influential, and  thus 
pernicious; too easily misleading, they are potentially dangerous. 

Frankly, I have been subjected to many final conference talks in my career (this is 
the first time I inflict one) and as a whole they did not leave me with very strong 
impressions-with a few exceptions, one of which will be mentioned later on. 

A story and an outline 

A man had two wives, one old and one young. The old wife would pick the black 
hair from his beard, so that he would look older; the young wife would pick off the 
white hair, so that he would look younger. In the end, the man was left with no 
beard. 

Take this as an allegory for confrontations between biologists and  physicists. Let 
the man be ‘brain science’; his beard, the ‘models’; the old wife, biology; the young 
wife, physics. The biologists are eager to take away the unbiological elements in order 
to make the models more realistic; the physicists are prone to discarding the unessential 
parameters, to make the models more soluble. After our two weeks of vigorous debate, 
a superficial observer might slide toward the conclusion that no neural modelling is 
left at the physics-biology interface. But let us be a little more perceptive with, first, 
a survey of some basic issues: 

the number of cell types, in neural systems; 
the properties of a single neuron; 
the synapses, as sites for learning; 
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the important scales, and  the appropriate measurements; and, second, a discussion 

what is the neural code? and, more specifically, the confrontation: computing-by- 

the choice between ‘realistic’ ab initio models versus ‘simplified’, idealised, models. 

centred on two debates: 

dynamic-flow or computing-with-attractors? 

2. Survey of basic issues 

2.1. How many cell types? 

We have heard several estimates for a mammalian cortex ranging from 2 ( V  Braitenberg 
and I White) to lo7 (T Bullock). This does not imply a disagreement about facts, since 
the criteria for class identification may vary in degree of coarseness. Our  question will 
be more precisely phrased: how many cell types should be included in a neural network 
model, in order to achieve some biological relevance? 

For clarification, it should be emphasised that we are interested here in anatomical 
differences, as distinct from merely functional ones. In some sense, each neuron is 
different from any other, because their geometrical location and  their connections 
differ. But this kind of difference will be found in any random structure. 

In the basic models of statistical mechanics, for heterogeneous (spin giass) as well 
as for homogeneous systems, there is traditionally only one type of constituent element 
(e.g. the binary Ising spin). For simplicity, this feature has been carried through into 
many early neural network models. However, let me remind you of D Lehmann’s talk, 
where he reported a significant and promising step toward the biological findings for 
the cortex, namely the inclusion of two neuron types (one excitatory such as the 
pyramidal cell, the other inhibitory such as the stellate cell). 

On the frontier of model investigations, other kinds of differences between cell 
types clearly deserve attention, such as differences between receptor neurons (coupled 
to the inputs) and processing neurons (hidden from the outside), and  differences in 
the characteristics of time constants (inputs integration, refractory periods, response 
delays). 

2.2. How many parameters to describe a single neuron? 

The neurobiologists, as they refine their tools (anatomy, physiology, chemistry), strive 
to explore the complexity of a single neuron ( I  Segev). As a result of their successful 
endeavours, the list of parameters characterising a single neuron becomes an  ever 
increasing one. This makes even more crucial, for the theoretician-be he or  she of 
biological or physical origin-to separate the details (to be discarded) from the 
essentials (to be included). Of course, the separation is not intangible and  will in 
general depend on the level of comprehension that is looked for. 

Much of the excitement, during recent years came from the surprise that models 
with very simple formal neurons were producing a wealth of results on the storage 
properties of distributed memories. But remember how primitive present theories are, 
when no consensus is achieved on some fundamental questions. 
( a )  Are the spikes relevant? Spikes may be totally irrelevant to functional behaviour 
of the cortex, argued T Bullock, as he advocated the study of compound electric fields, 
averaging over large neural populations. The firing frequency of a neuron is, generally, 
the relevant variable, claimed J Hopfield (in an  analogy with electrical currents, a 
single spike might be as irrelevant as the trajectory of a single electron), in support of 
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the graded deterministic, model (as defined in his 1984 paper). But the spike noise 
deserves attention because i t  is often quite helpful functionally, stressed D Amit, H 
Gutfreund and H Sompolinsky, advancing along the road of the discrete stochastic 
model (as defined by Hopfield in 1982). And, in complete contrast with the above, 
biologists or  physicists, M Abeles presented his synfire chain theory, where the spike 
structure is absolutely essential, due to synchronicity effects ignored in other theoretical 
formulations. 

( b )  Low activities of a neuron. In the most naive interpretation of the theory of 
computation-with-attractors (from Hebb’s cell assembly formulation to the Hopfield- 
like high-feedback models), a neuron involved in a persistent state ( an  attractor) is 
supposed to fire either strongly (close to maximum firing) or  weakly (close to minimal 
firing). 

Now, although occasional bursts are recorded in the cortex, the analysis shows 
that they d o  not fit the criteria to be relevant as evidence for persistent activity states 
(they are much too rare and  fleeting). The bursts being ruled out, at least in the cortex, 
what can be observed (E  Vaadia) is the switching of a neuron between two low-activity 
states (say, one with 5 spikes per second, the other with 20). However, from the 
theoretical side, it has proved difficult to devise neural network models that present 
this feature (two different low-activity states), with sufficient structural stability. 

During this conference, an illuminating discussion between J Hopfield and H 
Sompolinsky has suggested that the input-output response curve of the neuron (firing 
frequency f plotted against synaptic inputs, o r  membrane potential U )  may be crucial 
for this effect. Namely if, everything else remains unchanged, the neuron response 
curve is changed from the standard smooth sigmoid form (figure l ( a ) )  to a form with 
a sharp threshold, o r  more generally one with a region of large slope (figure l ( b ) ) ;  
the property of switching between two stable states of low activity ensues naturally. 

Figure 1. Neuron response curves plotted as firing frequency against membrane potential, 
showing ( a )  a smooth sigmoid curve and ( b )  a curve with a region of large slope. 

Although further analysis is needed in this example, it is illustrative of the way by 
which neural network studies can help to extract the crucial parameters from the 
inessential details, and stimulate new experimental activity (here, in order to check 
the neuron response curves) and  new theoretical activity (here, in order to explore the 
consequences of this modification within the set of neuron characteristics). 

( c )  Time constants. Is delayed response an attribute of a significant fraction of neurons? 
This is an  example of a n  increase in formal neuron complexity. Recent model studies 
have shown the virtues of cells with delayed response for the production and recognition 
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of temporal sequences. As a result, the biologists are now encouraged to look harder 
for such cells. 

Is the neuron a coherence detector? Questions of timing between synaptic inputs 
along the dendritic geometry, and synchrony effects in general, are ignored or poorly 
addressed in the standard models. 

( d )  Thresholds as dynamical variables. In addition to the usual dynamical variables, 
i.e. neural activities and synaptic efficacies (P  Peretto), recent work (D  Horn) explores 
the possible role of thresholds and suggests their inclusion as relevant variables. 

2.3. Synapses 

Along with Hebb ideas, the synapses are generally considered as the main sites for 
modifications due to learning. 

( a )  Does the change occur on the presynaptic side or on the postsynaptic side? Research 
in Aplysia, and long-term potentiation in the hippocampus, as reviewed by J Byrne 
and H Segal, have fostered the ‘pre’ hypothesis, whereas the ‘post’ hypothesis has been 
much elaborated by considerations on the role of dendritic spines in the cortex (V 
Braitenberg). 

At issue is the existence of a Hebbian-like mechanism for synaptic modification, 
because the convergence of signals from the presynaptic and postsynaptic neurons will 
take place more naturally on the postsynaptic membrane (figure 2). 

Post 

Neurotrmsmitter - - - 
\ 
\ 
I 
I c I 

Electrochemical 
signal 1-6 Past 

Figure 2. Convergence of signals from presynaptic 
and postsynaptic neurons. change. 

Figure 3. The Aplysia-like circuitry for presynaptic 

If, however, a presynaptic mechanism takes place, then the information from the 
postsynaptic neuron must arrive on the presynaptic membrane via a retrograde signal 
through the junction (but so far there is no evidence for it), or via ad hoc circuitry 
(but this seems too contrived to be general) (figure 3). 

( b )  Short-term memory versus long-term memory. If two different learning mechanisms 
are implied, as suggested by invertebrate studies, and protein synthesis is involved in 
long-term memory, then how will the molecule be targeted from the unique protein 
production centre (the neuron nucleus) to one specific synapse among the many? That 
remains a mystery. 
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( c )  Accuracy in the synaptic efficacies. How dependent are the storage properties 
claimed by various models on a precise monitoring of the synaptic efficacies? And 
what kind of accuracy control is biologically plausible? 

2.4. Relevant scales and measurements 

What we would like to measure is not necessarily what we have access to, and  vice 
versa. At present, on two limited windows are working thousands of scientists: the 
‘population activity people’ and the ‘spike recorders’, who d o  not communicate much 
with each other. 

( a )  Compound jields of large populations. T Bullock has presented the case for elec- 
troencephalographic recordings. His was a minority view, in this meeting, and it is 
not currently leading to active confrontation with neural network theories, because 
the models so far generally lack any geometry, and are therefore unable to bring 
testable predictions to guide the experiments. 

( b )  Single neuron. The grandmother-cell hypothesis ( H  Barlow) is next to impossible 
to check, whether true or not, because the likelihood of recording from ‘the’ specialised 
neuron, involved in a particular recognition task, is almost zero. At present, hardly 
testable, this thesis is unpopular. 

( c )  Cell assembly. This is the conceptual framework-‘circuits compute, not popula- 
tions’-favoured by neural network modellists and  also by neurobiologists involved 
in single-unit or multi-unit recordings (Gerstein). It is useful to distinguish two simple 
extremes in the ensemble of models: the feedforward ‘perceptron’ and the feedback 
‘ganglion’. 

The ‘perceptrons’ ( E  Domany) are layered structures, where information flows from 
the first layer (input) to the last layer (output). To this scheme belongs also the synfire 
chain theory (M Abeles), with an  additional suggestion on how feedforward processing 
might emerge in a priori non-layered structures. 

The ‘ganglions’ are defined here as richly interconnected structures where the inputs 
govern the initial network state. Processing of the information occurs via the internal 
dynamics of the network, which eventually settles into an attractor. This persistent 
state then contains the output of the computation. 

Let us examine in more detail the debate between the two approaches. 

3. Debate: computing-by-dynamic-flow versus computing-with-attractors 

3.1. A few reminders 

( a )  On a scale going from early to late processing ( S  Hochstein and D Sagi), one 
can distinguish several stages: sensory, preprocessing (this stage may be shorter in 
olfaction than in vision or audition), recognition, attention. 

( 6 )  Brain anatomy suggests that there is always an  unambiguous sense of flow, 
that can be determined from the layer-to-layer projections, which are qualitatively 
different between forward and  backward direction (D Van Essen). This is true in 
visual cortex, inferotemporal cortex, hippocampus, cerebellum, . . . , 
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From anatomy also, note this quantitative fact stressed by V Braitenberg: in 1 mm2 
of cortex (which is a biologically relevant scale), there are as many synapses originating 
from outside cells as from inside cells. Is this figure accidental, or is it the result of 
some trend toward maximal complexity (in the sense of defining a system equally 
distant from the two simpler architectures of the pure feedforward perceptron and the 
pure fully connected ganglion)? 

(c) So far, the experimental evidence for persistent states comes either low down, 
from very primitive circuits (such as invertebrate central pattern generators), or high 
up, from event-related recordings (such as delayed template matching) in tasks involv- 
ing short-term memory and attention (where the observability may be due to a glueing 
of assemblies into superassemblies, increasing the likelihood that a randomly selected 
neuron takes part in the task). 

3.2. The issue of typicality 

It seems to me that most physicists would be happy enough if their models of 
computing-with-attractors had some sort of limited validity-say in the higher attentive 
tasks. But a biologist like Abeles insists on discovering ‘the’ neural code, namely the 
code used generally, in most activities of the cortex. Remember also the neat protest 
of S Hochstein: ‘where is the division between feature detectors (preprocessing) and 
neural nets (processing)? It seems always further than where we record!’ 

3.3. Some candidates for the neural code 

It is commonly agreed that at the sensory periphery, the firing frequency of a neuron 
codes for stimulus intensity. 

By contrast, in association areas, sharply different views are held. Many people 
think that the firing frequency of a neuron codes for the probability that some 
proposition is true. An earlier-mentioned consequence of this view is that individual 
spikes become irrelevant, like single electrons in electric wires. 

The brace in figure 4 ( a )  emphasises a time interval when the neuron firing has 
become more frequent, and therefore significant. Note that the neuron (or the 
neurophysiologist recording from it) may know when it (or he) is doing something 
meaningful, from the observable change in the firing activity. 

However, in the synfire chain scheme (M Abeles), isolated spikes are meaningful, 
and there is no way for the neuron to know which one of its spikes are significant (in 
figure 4 ( b )  two ‘relevant’ spikes are marked, but no feature in the single-neuron 

- 
l a1  I I I  I I I 1 I I I 1 1 1 1 I I l l  I I I 1  I I I 1 I 

c .c 
I b )  I I 1  I I  I I I l l  I I  I 

Time - 
Figure 4. Neuron firing frequency coding ( a )  for stimulus intensity and ( 6 )  in the synfire 
chain scheme. 
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recording distinguishes those from the others). This obviously has implications for 
learning. How can meaningful learning take place at the proper synapses, if the 
information is not available locally (and if we are reluctant to use the escape hypothesis 
of higher supervisory neurons)? 

3.4. Pattern recognition 

Let us assume that pattern recognition is the ‘typical’ cortex activity. In contrast with 
the task-related states of E Vaadia, two experimental difficulties for microelectrode 
recordings appear: fewer neurons and smaller times. 

Presumably, in a typical pattern recognition computation, much smaller cell assem- 
blies are involved than in attention states. The time intervals may be between 30ms 
and 200 ms (Abeles), instead of 10 s. 

Note that it may be useful to distinguish between the computation time (time 
needed to reach the solution of the task) and the retention time (time during which 
the result of the computation is held available for further processing). In speech, it 
may be that the information on word recognition is passed on immediately to higher 
areas, and need not be retained as such, whereas information on the spatial environment, 
and everything that defines the mental ‘frame’ inside which the subject organises his 
or her activity, may require long retention times (it is perhaps the main virtue of the 
computing-with-attractors schemes to provide a simple solution for variable retention 
times, which is not so easy to explain in computing-by-dynamic-flow). 

4. Digression on physics, biology and the neural code 

There is a famous pronouncement by Sir Ernest Rutherford (1871-1937), who was a 
physicists’ physicist, though he got a Nobel prize in chemistry. He said something 
like ‘Science is physics, and (the rest is) stamp collecting’. At some times, during this 
seminar, I felt that Moshe Abeles was about to claim ‘Neural science is biology, and 
(the rest is) model collecting’. 

Indeed, till Rutherford’s days, biology was diversity. Then, largely under the 
influence of physicists such as Delbriick, Schrodinger, Szilard, Gamow, Perutz, Luria 
and Crick, it turned into a search for universal laws. Remember the universal genetic 
code (despite exceptions recently found in paramecium, etc); the central dogma that 
genetic information flows from D N A  to RNA to proteins (despite exceptions like 
retroviruses, etc); the selective mechanism of the immune system, ‘one B-cell, one 
antibody’; and so on. 

I n  these studies, many biologists have adopted the physics strategy of looking for 
the simplest system, on which universal features can be unravelled and crucial tests 
performed. Remember the bold saying ‘Why study the elephant, when there is the 
bacteria?’ Meanwhile, during the same period of time, much of the thrust of physics 
has turned from the study of fundamental laws into the exploration of emergent 
collective properties of matter. And this has led physics into a diversity of models and 
metaphors. 

At this point, let me recall a personal souvenir. That was in 1973, near Goteborg, 
at a Nobel Symposium on Collective Properties of Physical Systems. In an after-dinner 
speech, the physicist Harry Suhl, inspired by the recent discovery of two superfluid 
phases in helium 3, both of which had been predicted by two conflicting theories, 
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concluded ‘Provided your model conserves energy and momentum, Nature will be 
kind enough to present a realisation for it’. 

This philosophy may explain the flourishing of models and-even more remotely 
from realistic matter studies-of metaphors and scenarios, that are accumulated into 
repertoires in which you take your pick a posteriori, according to the observed behaviour 
of your system. Call it ab termino theory, in contradistinction with ab initio. This 
course of theorising has become common practice in hydrodynamics (e.g. approach 
to turbulence) and it is invading other fields. 

Nonetheless, a number of physicists become dissatisfied with this state of affairs 
and are now turning towards biology, in order to recapture the harder confrontation 
with reality, as in the good old days. In some sense, these physicists turn to new 
biology out of faithfulness for old physics. So, I admit that Moshe has a point, and 
I would predict that, together with more continuation of statistical physics, and along 
with more exploration of toy models and of new computing devices (S Solla), there 
will be in the future a harder look and a stronger focus to study typical biological 
computations, such as pattern recognition in the cerebral cortex. 

En attendant new scientific evidence, let me epitomise the main arguments in favour 
of computing-with-attractors. 

On a set of neurons, there are several activity states, which are mutually exclusive: 
this forces a decision, that is taken by the network after weighing all the data. 

Variable duration of attractor activity, i.e. variable retention time for a percept or 
a concept, is simply accounted for. 

It is robust to neural degradation. 
And now, the case for the synfire chain. 
It is an efficient way for precise transport of information in an intricately connected 

It appears to be a spontaneously emergent property of assemblies of ‘coincidence 

It has no problem with low activity rates. 

network. 

detectors’. 

5. Debate: realistic ab-initio models versus idealised abstracted models 

Despite some appearance to the contrary during the past days, when the colourfully 
displayed Caltech models of D Van Essen and J Bower aroused controversy with 
paper-and-pencil theoretical physicists, I believe that this is not a debate between 
biology and physics, but an internal debate within physics and within biology. Remem- 
ber, in physics, all these ab initio models for band calculations in solids, molecular 
dynamics in liquids, models of atmosphere, etc. And in biology, the idealised Monod- 
Wyman-Changeux model for allosteric molecules that remains, 25 years later, an 
unavoidable reference. 

Rather, the debate focuses on the proper use of computers, with their increasing 
computing power and graphic capacities, for heuristics. Use whatever approach you 
prefer: in the end, if your model is to be successful and adopted by others, even if 
you started playing with dozens of parameters, Occam’s razor will prevail and what 
will remain is only the essentials (with, perhaps, the definition of several levels of 
analysis, using different sets of relevant parameters). 

Let me try to draw a lesson from photosynthesis (credit for the idea should go to 
my colleague Pierre Joliot, but responsibility for mistakes in transcription is mine), 
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Photosynthesis appears to the observer as a horribly complicated superposition of 
three mechanisms, exquisitely optimised in every detail. Why is it so? Is this the result 
of an evolution process, stuck in a local minimum? Has this superposition a safety 
value? Whatever the answers, biological photosynthesis should not, emphatically not, 
be imitated globally for industrial photosynthesis, though inspiration can be drawn 
from the constituent mechanisms, after careful analysis and discrimination. 

Now, is the photosynthesis lesson pertinent for the cerebral cortex? There are 
arguments for no and yes. No, because the cortex homogeneity suggests a general- 
purpose computer. Yes, because the multiplicity of areas (anatomy), the numerous 
visual illusions (psychophysics), suggest a manifold superposition of algorithms (a 
‘bag of tricks’ rather than, say, a grand solution to such a grand problem as invariant 
recognition). 

Sure, as stressed by T Sejnowsky, inspiration from biology does not imply putting 
in the models as many biological parameters as currently measured. Actually, the new 
developments in neural tissue cultures (D  Kleinfeld) offer an attractive experimental 
procedure to analyse the relative influence of various neural parameters on their 
network properties. 

As for directions in the future, let me be a cautious prophet and predict that the 
progress of brain science will be largely determined by the choices made by young 
people receiving multidisciplinary education in Caltech, Bell, Jerusalem, etc. Indeed, 
this year here has been a great opportunity for thoughts at the crossroads. Brera, yesh 
(Hebrew for: Choice, there is). 

Bibliography 

Two books have been written during the programme of the Jerusalem Institute, and 
the interested reader will find in them an adequate introduction to the subject and 
complementary surveys. 

Amit D J 1989 Modelling Bruin Function (Cambridge: Cambridge University Press) 
Peretto P 1989 The Modeling of Neural Networks (Les Ulis: Editions de Physique) 


